Genome Wide Expression Analysis Suggests Perturbation of Vascular Homeostasis during High Altitude Pulmonary Edema
نویسندگان
چکیده
BACKGROUND High altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic edema which occurs in unacclimatized but otherwise normal individuals within two to four days after rapid ascent to altitude beyond 3000 m. The precise pathoetiology and inciting mechanisms regulating HAPE remain unclear. METHODOLOGY/PRINCIPLE FINDINGS We performed global gene expression profiling in individuals with established HAPE compared to acclimatized individuals. Our data suggests concurrent modulation of multiple pathways which regulate vascular homeostasis and consequently lung fluid dynamics. These pathways included those which regulate vasoconstriction through smooth muscle contraction, cellular actin cytoskeleton rearrangements and endothelial permeability/dysfunction. Some notable genes within these pathways included MYLK; rho family members ARGEF11, ARHGAP24; cell adhesion molecules such as CLDN6, CLDN23, PXN and VCAM1 besides other signaling intermediates. Further, several important regulators of systemic/pulmonary hypertension including ADRA1D, ECE1, and EDNRA were upregulated in HAPE. We also observed significant upregulation of genes involved in paracrine signaling through chemokines and lymphocyte activation pathways during HAPE represented by transcripts of TNF, JAK2, MAP2K2, MAP2K7, MAPK10, PLCB1, ARAF, SOS1, PAK3 and RELA amongst others. Perturbation of such pathways can potentially skew vascular homeostatic equilibrium towards altered vascular permeability. Additionally, differential regulation of hypoxia-sensing, hypoxia-response and OXPHOS pathway genes in individuals with HAPE were also observed. CONCLUSIONS/SIGNIFICANCE Our data reveals specific components of the complex molecular circuitry underlying HAPE. We show concurrent perturbation of multiple pathways regulating vascular homeostasis and suggest multi-genic nature of regulation of HAPE.
منابع مشابه
Albnormal Circulatory Responses to High Altitude in Subjects with a Previous History of High - Altitude Pulmonary Edema
In five men with a history of susceptibility to high-altitude pulmonary edema (HAPE), hemodynamics and pulmonary gas exchange were measured at sea level, and again 24 hours following ascent to an altitude of 3,100 m. At sea level, all findings were essentially normal including a mean pulmonary arterial pressure (Ppa) of 13.8 + 1.9 mm Hg. None of the subjects developed clinically detectable pulm...
متن کاملAbnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema.
In five men with a history of susceptibility to high-altitude pulmonary edema (HAPE), hemodynamics and pulmonary gas exchange were measured at sea level, and again 24 hours following ascent to an altitude of 3,100 m. At sea level, all findings were essentially normal including a mean pulmonary arterial pressure (Ppa) of 13.8 + 1.9 mm Hg. None of the subjects developed clinically detectable pulm...
متن کاملAugmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema.
BACKGROUND Pulmonary hypertension is a hallmark of high-altitude pulmonary edema and may contribute to its pathogenesis. Cardiovascular adjustments to hypoxia are mediated, at least in part, by the sympathetic nervous system, and sympathetic activation promotes pulmonary vasoconstriction and alveolar fluid flooding in experimental animals. METHODS AND RESULTS We measured sympathetic nerve act...
متن کاملGene polymorphisms and high-altitude pulmonary edema susceptibility: a 2011 update.
High-altitude pulmonary edema (HAPE) is a severe disease caused by high-altitude hypoxia. Since some individuals are more susceptible to high altitude than others, the incidence is variable and cannot be predicted. Furthermore, multiple genes can contribute to the occurrence of HAPE, making it even more difficult to predict. The genes associated with HAPE include those in the renin-angiotensin-...
متن کاملInhaled nitric oxide for high-altitude pulmonary edema.
BACKGROUND Pulmonary hypertension is a hallmark of high-altitude pulmonary edema and may contribute to its pathogenesis. When administered by inhalation, nitric oxide, an endothelium-derived relaxing factor, attenuates the pulmonary vasoconstriction produced by short-term hypoxia. METHODS We studied the effects of inhaled nitric oxide on pulmonary-artery pressure and arterial oxygenation in 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014